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Abstract—Federated learning is a powerful machine learning
paradigm that enables a large number of machine learning
applications that must comply with strict and complex data
privacy regulations. In this paper, we focus on one of the
fundamental components of Federated Learning: federated ag-
gregation algorithms. These algorithms play a pivotal role in
consolidating insights and the model updates from various clients
while preserving data privacy and security. We compare their
efficacy across different types of dataset configurations, including
balanced IID (Independent and identically distributed) data,
unbalanced IID data, and non-IID data characterized by label
distribution skew and feature distribution skew. For our specific
use case, the experiments presented in this work show that
FedProx is the overall best performing state-of-the-art algorithm
for binary classification tasks of medical X-rays distributed in
datasets of a small number of hospitals.

Index Terms—Federated Learning, Aggregation Algorithms,
Non-IID Data, Machine Learning

I. INTRODUCTION

Federated Learning [1] is a pioneering framework in ma-
chine learning that enables collaborative model training across
multiple entities while maintaining data privacy. Unlike tradi-
tional centralized learning approaches that store and process
data on a central server, FL operates on a decentralized model.
In this paradigm, training data remains distributed across
various participants, known as federated clients, which helps to
comply with stringent data privacy regulations. However, this
decentralized approach introduces several challenges, includ-
ing handling non-Independent and non-Identically Distributed
(non-IID) data, ensuring efficient communication, and main-
taining the privacy and security of the data.

One of the critical components of FL is the federated
aggregation algorithm, which consolidates model updates from
different clients to form a global model. The choice of aggre-
gation algorithm can significantly impact the performance and
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stability of the federated learning process. This study focuses
on evaluating various federated aggregation algorithms, such
as FedAvg, FedProx, and others, which were chosen for their
prominence and effectiveness as reported in existing litera-
ture. These algorithms represent a spectrum of approaches
to addressing the unique challenges of federated learning,
including handling non-IID data distributions and ensuring
robust convergence.

FL has applications in various domains, including health-
care, finance, and mobile applications. For instance, in health-
care, FL enables collaborative training of models across hospi-
tals while ensuring patient data privacy. In the finance sector,
FL allows institutions to collaboratively detect fraud patterns
without sharing sensitive customer data. The mobile industry
leverages FL to improve user experiences by training models
on-device, thus preserving user privacy [2].

Non-IID data poses specific challenges in federated learning
because the data held by different clients can vary significantly
in distribution. This heterogeneity can lead to instability and
poor performance if not properly managed by the aggregation
algorithm. For instance, clients may have different label dis-
tributions or feature distributions, which can cause the global
model to converge more slowly or inaccurately. Addressing
these challenges requires careful selection and tuning of ag-
gregation algorithms to ensure they can effectively manage the
variability and complexity of real-world data distributions.

This study aims to conduct a comparative analysis of
these aggregation algorithms to determine their efficacy across
different dataset configurations. By understanding how these
algorithms perform in various scenarios, particularly in med-
ical imaging applications where data privacy is paramount,
we can identify the most suitable approaches for specific use
cases.



II. METHOD

This section presents the methods and experiments con-
ducted to determine the most suitable federated learning
aggregation algorithm for our use case, specifically a binary
classification problem of X-ray images distributed across dif-
ferent databases from a small number of hospitals. A simple
Convolutional Neural Network (CNN) was employed as the
local learning algorithm on each client, as it is well-suited
for image classification tasks and provides a solid baseline for
evaluating aggregation methods.

We first introduce the experimental dataset, with several
artificially generated configurations created from it to simulate
different distribution scenarios. Next, we select and evaluate
several state-of-the-art aggregation algorithms. Specifically, we
tested FedAvg, FedProx, qFedAvg, and Scaffold on seven
artificially generated dataset configurations. For FedProx and
qFedAvg, experiments were conducted using three different
values of their respective hyperparameters (µ for FedProx and
q for qFedAvg), resulting in a total of 56 federated learning
simulations. The candidate set {0.1, 0.5, 1.0} was chosen for
µ in FedProx based on previous studies [3], while the set
{1×10−4, 1×10−5, 1×10−6} was selected for q in qFedAvg
after preliminary experiments [4]. Five federated clients were
simulated, each training a CNN model for 5 local epochs
per communication round using a stochastic gradient descent
(SGD) optimizer with no momentum. Each simulation ran
for 100 communication rounds, and the best hyperparameter
values were selected based on performance.

A. Selection of the Experimental Dataset

For the purpose of this project, a publicly available chest
X-ray image dataset was selected to conduct experiments and
evaluate results. The dataset, composed of healthy chest X-rays
and X-rays of patients with pneumonia, was chosen because
it is suitable for binary image classification tasks. The data
used in both cases is of similar nature, generated using the
same technology and in the same hospital environment with
strict procedures.The dataset consists of X-rays used to classify
pneumonia, as described in [5].

To ensure the dataset’s cleanliness and relevance for this
study, all X-rays were selected based on quality requirements,
and low-quality or unreadable images were removed. The
diagnoses for each X-ray were evaluated by two experts,
with these evaluations checked by a third expert to ensure
no grading errors were made.

B. Federated aggregation algorithms

This section provides an overview of the current land-
scape of federated learning aggregation algorithms, beginning
with the inaugural federated learning algorithm developed by
Google in 2016 [6], and then presenting the most cutting-
edge algorithms. The key characteristics of each algorithm are
summarized in Table I for easier comparison.

1) FedAvg: Federated Averaging [6] is one of the earliest
federated learning algorithms. It involves a central federated
server performing model averaging based on the resulting
models from multiple clients, which perform local SGD on
their local private datasets. The objective function is:

min
w

f(w) =

K∑
k=1

nk

n
Fk(w) (1)

where w is the global model parameter, F (w) is the global
objective function, K is the total number of participating
clients, nk is the number of samples held by the k-th client, n
is the total number of samples held by all clients, and Fk(w)
is the local objective function of the k-th client.

2) FedProx: FedProx [7] introduces a proximal term to the
local objective function of each client to limit the distance
between the local model of each federated client and the
global model. This helps improve performance and stability,
particularly with non-IID data. The proximal term ensures each
client converges towards the global objective rather than their
local optima.

3) qFedAvg: q-FedAvg [8] addresses fairness by giving
more weight to poorly performing clients. The objective
function is:

min
w

fq(w) =

K∑
k=1

nk

n

q + 1
F q+1
k (w) (2)

Where F q+1
k denotes the local cost function to the power of

(q+1) of the client k. And q is the new introduced parameter
that adjusts the level of fairness we want to impose. The
higher q is, the higher the contribution to the global model of
federated clients with a high local loss will be, and the higher
the level of fairness of the training accuracy distribution will
be.

4) FedNova: FedNova [9] normalizes local updates by
scaling them according to the number of local steps taken
by each client, addressing the issue of objective inconsistency
in heterogeneous networks.However, we do not use FedNova
in our study as it is designed for scenarios with heteroge-
neous clients having varying computation power, which is not
applicable to our use case where the clients (hospitals) have
relatively similar computational capacities.

5) Scaffold: Scaffold [10] estimates and corrects the local
drift of clients to ensure their updates move towards the global
optimum rather than local optima, improving performance in
non-IID scenarios.

C. Artificial generation of dataset configurations

To compare different aggregation algorithms, several dataset
configurations were artificially generated based on the chest
X-ray dataset. These configurations simulate various types of
data distributions and statistical heterogeneity across federated
clients, representing real-life scenarios. The final federated
learning configuration proposed in this work is used in a



TABLE I
SUMMARY OF FEDERATED AGGREGATION ALGORITHMS

Method Key
Characteristics Practical Implications

FedAvg
Weighted

average of local
models

Simple and effective in IID data
scenarios but struggles with

non-IID data.

FedProx

Proximal term in
the local
objective
function

Improves stability and
performance with non-IID data,
useful in heterogeneous client

environments.

qFedAvg

Weighted
average with

fairness
adjustment

Aims to provide fairer
performance across clients,

beneficial when some clients have
significantly worse performance.

FedNova
Normalizes local
updates by local

steps

Addresses objective inconsistency,
ensuring faster error convergence

in heterogeneous networks.

Scaffold Corrects local
client drift

Ensures updates move towards the
global optimum, improving

performance in non-IID scenarios.

context of five federated clients (i.e., hospitals). Fig. 1 provides
an overview of all the dataset configurations proposed in this
work.

1) Configuration 1 - Balanced datasets & IID data: The
first artificially generated dataset configuration represents a
case with no statistical heterogeneity. In this configuration, the
local datasets of all federated clients contain the exact same
number of X-rays, indicating no quantity skew. Additionally,
each client has a 25-75 label distribution (25% healthy),
signifying no label distribution skew. Moreover, there is no
feature distribution skew between the datasets. While this
configuration is unlikely to occur in real-life scenarios, it will
be used as a starting point for the comparison.

2) Configuration 2-3 - Unbalanced datasets & IID data
: Two different configurations with different levels of un-
balanced datasets are generated. Configuration #2 is less
unbalanced and still relatively homogeneous with 827 data
samples in the smallest dataset and 1246 in the largest one.
Configuration #3 is more extreme with clients 1, 4, and 5
having disproportionately small datasets compared to clients
2 and 3. These two configurations still represent cases of IID
data as all the federated clients have the same label distribution
(25-75), regardless of the total size of their local dataset. There
is no feature distribution skew between the datasets.

3) Configuration 4-5 - Label distribution skew (non-IID):
Configurations #4 and #5 represent cases which combine both
unbalanced datasets and non-IID data. These configurations
specifically involve label distribution skew, meaning that the
distribution of labels (healthy and pneumonia X-rays) is
different for each local dataset. The configurations are only
slightly unbalanced as the main goal is to analyze the effects
of label distribution skew. Configuration #4 remains relatively
homogeneous with the highest proportion of healthy X-rays at
39% (client 1) and the lowest at 17% (client 2). Configuration
#5, on the other hand, represents a case where one of the
hospitals (client 2) has a completely different label distribution

than the others.
4) Configuration 6-7 -Feature distribution skew (non-IID):

Configurations #6 and #7 introduce non-IID distributions
among clients, specifically feature distribution skew. As ex-
plained previously, the distribution of features may be skewed
by the fact that different hospitals may use different types of
imaging equipment or different image acquisition parameters.
This can result in significant differences in the X-rays gener-
ated between different hospitals.

To simulate feature distribution skew, the local datasets of
a portion of the five clients were artificially degraded with
varying levels of Gaussian noise or Gaussian blur. For Con-
figuration #6, small levels of Gaussian noise were introduced
to the datasets of clients 1 and 2. For Configuration #7, higher
levels of Gaussian noise were applied to the datasets of clients
1 and 2, and Gaussian blur was added to the dataset of client 3.
This process involved adding Gaussian noise with a specified
mean and variance to the pixel values of the images and
applying a Gaussian blur filter with a specified kernel size
to create blurred images. These modifications were intended
to mimic the variations in image quality that might result
from different imaging equipment or settings used in different
hospitals.

Fig. 1. Illustration of different dataset configurations



TABLE II
DETAILS OF FEATURE DISTRIBUTION SKEW CONFIGURATIONS

Client Configuration #6 Configuration #7

C1 Gaussian noise (µ=0,
σ2=0.002)

Gaussian noise (µ=0,
σ2=0.005)

C2 Gaussian noise (µ=0,
σ2=0.005)

Gaussian noise (µ=0,
σ2=0.01)

C3 No modification Gaussian blur (kernel
size=5x5)

C4 No modification No modification
C5 No modification No modification

The application of Gaussian noise and blur is illustrated
in Table II, which shows examples of modified X-rays. This
approach allows us to evaluate the robustness of the aggre-
gation algorithms under conditions that simulate real-world
variability in data quality across different clients.

D. Selection of appropriate aggregation algorithms

The appropriate aggregation algorithms are selected based
on six criteria: ability to perform in cross-device and cross
silo settings, ability to handle IID and non-IID data, ability
to provide privacy-friendly solution, and others. FedAvg, Fed-
Prox, qFedAvg, and Scaffold were selected as they meet the
criteria. FedAvg may decrease in performance with non-IID
data, but it is included as the level of heterogeneity in the
use-case is small. FedNova was not selected as it is designed
for heterogeneous clients with different computation power,
which does not apply to the use-case.

E. Federated Learning benchmarking framework

The selected aggregation algorithms are benchmarked using
the easyFL open-source framework developed in [11]. This
framework is a research-oriented experimental platform that
offers multiple reusable and adaptable modules, enabling re-
searchers to conduct various experiments on both existing and
new federated learning algorithms.

III. EXPERIMENTAL RESULTS

This section presents the results of the simulations for the
different dataset configurations.

A. Balanced datasets & IID data

Fig.2 shows the results of the simulations for Configuration
#1 for the last 40 communication rounds. Both FedAvg and
FedProx quickly reached over 80% accuracy but experienced
some stability issues around round 20, ultimately stabilizing
around round 100. Scaffold and qFedAvg were slower to reach
80% accuracy and ultimately achieved lower final accuracies.

The fact that FedAvg and FedProx show relatively similar
behavior can be explained by the fact that their algorithms
are very similar. As explained in Section II.B, FedProx is
a re-parametrization and generalization of FedAvg and only
introduces a proximal term to the local objective function
of each client. For a simple balanced and IID configuration,
FedAvg provides the highest final accuracy.

Fig. 2. Conf #1 - Testing accuracy for the last 40 communication rounds.

B. Unbalanced datasets & IID data

For Configurations #2, as illustrated in Fig.3, FedAvg and
FedProx again showed higher accuracies compared to other
algorithms. In Configuration #2, FedAvg performed better,
while in Configuration #3, both algorithms showed nearly
identical accuracies around 84%.

However, in Configuration #3, as the quantity bias in-
creases (i.e., becomes more unbalanced), both algorithms
exhibit nearly similar accuracies, with 84.13% and 84.29%
respectively.

Fig. 3. Conf #2 & #3 Testing accuracy for the last 40 communication
rounds.



C. Label distribution skew (non-IID)

Configurations #4 and #5 introduce statistical data hetero-
geneity, specifically label distribution skew (i.e., the distri-
bution of labels varies across each local dataset). In both
configurations, the test accuracies are significantly less stable
(primarily during the first 50 communication rounds) com-
pared to the first three IID configurations. This outcome is
expected as aggregation algorithms must handle non-IID data
distributions.

Another interesting result is that the FedAvg algorithm,
which has consistently provided the highest (or second high-
est) accuracies, now shows the lowest accuracies at round
100 for both Configurations #4 and #5 (82.37% and 81.73%
respectively), as shown in Fig.4. On the other hand, Scaffold,
which previously yielded relatively poor results, has improved
significantly and now provides accuracies nearly as good as
FedProx.

D. Feature distribution skew (non-IID)

Configurations #6 and #7 also introduce non-IID distri-
butions among clients, specifically feature distribution skew.
As explained in Section II.C, these configurations are char-
acterized by degrading a portion of the local datasets of
the five clients with varying levels of Gaussian noise or
Gaussian blur. Similar to the previous two configurations, and
as shown in Fig.5, the test accuracies for these configurations
are significantly less stable compared to the first three IID
configurations. The stability of the accuracies in Configuration

Fig. 4. Conf #4 & #5 - Testing accuracy for the last 40 communication
rounds.

Fig. 5. Conf #6 & #7 - Testing accuracy for the last 40 communication
rounds.

#7 is the worst because the datasets of three out of five clients
are degraded, compared to only two clients, and with lower
levels of degradation in Configuration #6, as shown in Table
III in Section 4.

The qFedAvg’s accuracy remains consistent for the first
40 consecutive communication rounds before stabilizing and
reaching over 80% accuracy by round 48. For the more
extreme Configuration #7, Fig.5 shows that qFedAvg and Scaf-
fold are extremely unstable during the first 40 communication
rounds and remain relatively unstable compared to FedAvg
and FedProx in the last 50 rounds.

The final accuracies of all algorithms are logically lower
than those of the previous configurations, as part of the datasets
are degraded.

IV. DISCUSSION

The experimental results demonstrate that the performance
of federated aggregation algorithms varies significantly de-
pending on the distribution of data among federated clients.
For example, the FedAvg algorithm shows excellent perfor-
mance in contexts where data is IID among clients, but its per-
formance decreases significantly when data is non-IID, such
as in cases of label distribution skew or feature distribution
skew. Conversely, algorithms like FedProx and Scaffold are
more robust in non-IID scenarios but underperform compared
to FedAvg in IID contexts.



Configuration FedAvg qFedAvg FedProx Scaffold
Conf #1
IID Balanced 83.96% 82.27% 83.17% 81.41%

Conf #2
IID UnBalanced 84.20% 83.65% 83.82% 82.21%

Conf #3
IID UnBalanced + 84.13% 83.49% 84.29% 81.41%

Conf #4
Non-IID Label skew 82.37% 83.33% 83.48% 83.17%

Conf #5
Non-IID Label skew + 81.73% 82.37% 83.81% 83.17%

Conf #6
Non-IID Feature skew 80.61% 81.57% 82.11% 80.92%

Conf #7
Non-IID Feature skew + 77.34% 77.08% 78.84% 77.56%

TABLE III
ACCURACIES ACHIEVED AT COMMUNICATION ROUND 100 BY ALL

AGGREGATION ALGORITHMS FOR EACH CONFIGURATION.

Table III summarizes the final accuracies achieved at com-
munication round 100 by all aggregation algorithms for the
seven artificially generated dataset configurations.

According to the results presented above, FedAvg provides
the best performance in cases without statistical heterogeneity.
It shows significantly higher test accuracies than the other
algorithms for the first two IID configurations and nearly
matches FedProx for the third IID configuration.

In non-IID scenarios, performance dynamics shift notably.
FedAvg records the lowest accuracies in three of the four non-
IID configurations and ranks second-worst in the final one.
This degradation under non-IID conditions is expected and
aligns with theoretical expectations.

FedProx consistently achieves the best performance in non-
IID configurations, with more stable accuracies than qFedAvg
and Scaffold at higher non-IID levels, as shown in Fig.4 and
Fig.5. Although qFedAvg is slow to reach good accuracies, it
performs well in most cases except the last, where high feature
distribution skew leads to instability. Scaffold performs worst
in the first three IID setups but improves notably in the final
four non-IID configurations.

V. CONCLUSION

Aggregation algorithms play a crucial role in federated
learning. Our study shows that their performance is closely
tied to the data distribution among clients. FedAvg excels in
IID scenarios but underperforms in non-IID settings with label
or feature distribution skew. In contrast, FedProx and Scaffold
perform better in non-IID environments but are less effective
in IID contexts. This highlights the need for careful selection
of aggregation algorithms based on data characteristics.

Practitioners should consider data distribution when imple-
menting federated learning. For IID data, simpler algorithms
like FedAvg may suffice, while non-IID scenarios require more
robust options such as FedProx or Scaffold.

Future work could explore ensemble learning [12] and
personalized federated learning (PFL) to address non-IID
challenges. Ensemble learning, by combining multiple local
models, could enhance robustness in heterogeneous settings.
Similarly, PFL techniques like model clustering [13] or meta-

learning [14] can better adapt models to specific client data,
reducing the effects of statistical heterogeneity.
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